Precalculus

2-05 Rational Zeros of Polynomial Functions

Remainder Theorem

If $\boldsymbol{f}(\boldsymbol{x})$ is divided by $(x-k)$, then the remainder is $r=f(k)$
Use the remainder theorem to evaluate $f(x)=4 x^{3}+10 x^{2}-3 x-8$ for $f(-1)$.

Rational Zero Theorem

If polynomial

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

The rational zeros are in the form $\frac{p}{q}$
where $\boldsymbol{p}=$ factors of a_{0}
$\boldsymbol{q}=$ factors of a_{n}
Find the rational zeros of $f(x)=x^{3}-5 x^{2}+2 x+8$ given that $x+1$ is a factor.

Find the real zeros of $f(x)=x^{3}-7 x^{2}-11 x+14$ given that $x+2$ is a factor.

